散文作文

合并同类项练习题(合并同类项题目及答案简单)

时间:2010-12-5 17:23:32  作者:招商合作   来源:军事专题  查看:  评论:0
内容摘要:今天给各位分享合并同类项练习题的知识,其中也会对合并同类项题目及答案简单进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!合并同类项练习题例1、合并同类项 1)(3x-5y)-(6

今天给各位分享合并同类项练习题的合并合并知识,其中也会对合并同类项题目及答案简单进行解释,同类同类如果能碰巧解决你现在面临的项练习题项题问题,别忘了关注本站,目及现在开始吧!答案

合并同类项练习题

例1、简单合并同类项

(1)(3x-5y)-(6x+7y)+(9x-2y)

(2)2a-[3b-5a-(3a-5b)]

(3)(6m2n-5mn2)-6(m2n-mn2)

解:(1)(3x-5y)-(6x+7y)+(9x-2y)

=3x-5y-6x-7y+9x-2y (正确去掉括号)

=(3-6+9)x+(-5-7-2)y (合并同类项)

=6x-14y

(2)2a-[3b-5a-(3a-5b)] (应按小括号,合并合并中括号,同类同类大括号的项练习题项题顺序逐层去括号)

=2a-[3b-5a-3a+5b] (先去小括号)

=2a-[-8a+8b] (及时合并同类项)

=2a+8a-8b (去中括号)

=10a-8b

(3)(6m2n-5mn2)-6(m2n-mn2) (注意第二个括号前有因数6)

=6m2n-5mn2-2m2n+3mn2 (去括号与分配律同时进行)

=(6-2)m2n+(-5+3)mn2 (合并同类项)

=4m2n-2mn2

例2.已知:A=3x2-4xy+2y2,B=x2+2xy-5y2

求:(1)A+B (2)A-B (3)若2A-B+C=0,目及求C。答案

解:(1)A+B=(3x2-4xy+2y2)+(x2+2xy-5y2)

=3x2-4xy+2y2+x2+2xy-5y2(去括号)

=(3+1)x2+(-4+2)xy+(2-5)y2(合并同类项)

=4x2-2xy-3y2(按x的简单降幂排列)

(2)A-B=(3x2-4xy+2y2)-(x2+2xy-5y2)

=3x2-4xy+2y2-x2-2xy+5y2 (去括号)

=(3-1)x2+(-4-2)xy+(2+5)y2 (合并同类项)

=2x2-6xy+7y2 (按x的降幂排列)

(3)∵2A-B+C=0

∴C=-2A+B

=-2(3x2-4xy+2y2)+(x2+2xy-5y2)

=-6x2+8xy-4y2+x2+2xy-5y2 (去括号,注意使用分配律)

=(-6+1)x2+(8+2)xy+(-4-5)y2 (合并同类项)

=-5x2+10xy-9y2 (按x的合并合并降幂排列)

例3.计算:

(1)m2+(-mn)-n2+(-m2)-(-0.5n2)

(2)2(4an+2-an)-3an+(an+1-2an+1)-(8an+2+3an)

(3)化简:(x-y)2-(x-y)2-[(x-y)2-(x-y)2]

解:(1)m2+(-mn)-n2+(-m2)-(-0.5n2)

=m2-mn-n2-m2+n2 (去括号)

=(-)m2-mn+(-+)n2 (合并同类项)

=-m2-mn-n2 (按m的降幂排列)

(2)2(4an+2-an)-3an+(an+1-2an+1)-(8an+2+3an)

=8an+2-2an-3an-an+1-8an+2-3an (去括号)

=0+(-2-3-3)an-an+1 (合并同类项)

=-an+1-8an

(3)(x-y)2-(x-y)2-[(x-y)2-(x-y)2] [把(x-y)2看作一个整体]

=(x-y)2-(x-y)2-(x-y)2+(x-y)2 (去掉中括号)

=(1--+)(x-y)2 (“合并同类项”)

=(x-y)2

【紧急】跪求:合并同类项练习题及答案(至少200道)

合并同类项的题目

(1)5ab2和-13ab2 ;(2)-9x2y3和 5x2y3;(3)4m2n和4nm2.

议一议:下列各组式中哪些是同类项?并说明理由:

(1) 2xy与-2xy (2) abc与ab (3) 4ab与0.25ab2 (4) a3与b3

(5) -2m2n与 nm2 (6) a3与a2 (7) 0.001与10000 (8) 43与34.

小 结:1.同类项中两个相同:(1)所含字母相同;(2)相同字母的指数相同

2.同类项中两个无关:(1)与字母的顺序无关;(2)与系数无关

3.特例:所有常数项也是同类项

想一想:下列各式计算分别等于多少?请说明理由:

(1) 7a-3a = (2) 4x2+2x2 =

(3) 5ab2-13ab 2 = (4) -9x2y2+5x2y2 =

通过上面的练习,你能发现各式计算的同类同类结果中系数有什么变化?字母呢及字母的指数呢?由此你能得出哪些结论?

小 结:(生充分讨论后)

(1)合并同类项概念:把同类项合并成一项。

(2)合并同类项法则:只取系数相加减,项练习题项题字母及指数不变样。

(3)合并同类项依据:乘法分配律。

辨一辨:下列各式的计算是否正确?为什么?

(1)3a+2b=5ab (2) 5y2-2y2=3 (3) 7a+a=7a2 (4) 4x2y-2xy2=2xy

典例分析:

例1:分别指出下列各题中的同类项,并合并同类项:

(1) -3x+2y-5x-7y

(2) (师写出解题格式)

变 题1:上例(1)中, 若x = y = ( a-b)2, 则如何合并同类项?

-3(a-b)2+2(a-b)2-5(a-b)2-7(a-b)2

变 题2:上例(2)中,若 ,如何求代数式的值?

总 结:通过这节课的研究,你有何收获?谈谈学习“同类项”有何用处?

(由学生自由发言,教师小结)

你有长进了吗?

试一试:

(1)已知:单项式x, 2x2 , 3x3, 4x4, 5x5,……中,第2004个单项式是什么?请计算前5个单项式的和。

(2):单项式x2, -2x2 , 3x2, -4x2, 5x2,-6x2,……中,第2004个单项式是什么?请前2004个单项式的和,并计算当x = - 时,你写出的多项式的值。

(3) 明在求代数式2x2-3x2y+mx2y-3x2的值时,发现所求出的代数式的值与y的值无关,试想一想m等于多少?并求当x = -2, y = 2004时,原代数式的值。

一、创设情景

(1)如图:是某学校的总体规划图,你能计算出这个学校的占地面积吗?

可以看出100a+200a+240b+60b=(100+200)a+(240+60)b

由此我们可以看出:在计算100a+200a 时,可以把它们的系数相加,再乘以a,既然100a+200a=(100+200)a;同样可以得到240b+60b=(240+60)b。

(2)问:在这里,你能说出100a与200a;240b与60b; 5ab2 与-13ab2 ; -9x2y3与5x2y3有什么共同特点?

(3)归纳出同类项概念:所含字母相同,并且相同字母的指数也相同的项是同类项。

(4)通过找朋友游戏巩固同类项概念。

(5)强调:几个常数项也是同类项。

二、例题巩固。

1、下列各组中的两项是不是同类项?说明理由。

(1) (2)a2bc与 ab2c

(3)-8xy2与 xy2 (4)3ab与 -ba

(5)-0.5 与9 (6)abm 与abn

(7)xy与 xyz (8)2m3n 与-6nm3

讨论的出理解同类项要注意:

(1)判断同类项的标准,一是所含字母完全相同,二是相同字母的指数也相同,两者缺一不可

(2) 同类项与系数的大小无关

(3) 同类项与它们所含字母的顺序无关

(4)所有的常数项都是同类项

2、把下列各式中的同类项合并成一项:

(1)7a-5a=______;

(2)4x2+x2=____;

(3)5ab2-13ab2=_____;

(4) -9x2y3+5x2y3=____;

合并同类项法则:把同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。

3、例题1:

(1)-3x +2y -5x -7y

(2)a2 – 3ab +5 –a2 -3ab -7

运用:加法交换律、结合律乘法对加法的分配律、有理数加法法则

4、例题2:

(1)2ab2 -a2b +ab2

(2)- 4ab+8a - 2b2 - 9ab – 8a

(3) m3 - 3m2n - m3 + 2nm2 – 7 + 2m3

5、讨论得到合并同类项的步骤:

(1)认真审题,依次找出同类项并在下面注上相同标线,标线时要把项的符号也标进去;

(2) 把同类项写在一起;

(3)利用法则合并同类项

四、思维拓展

1、如果5a4b与3a2xbx是同类项,那么x=____,y=_____, 它们的次数是_____。

2、当k=_____时,多项式 中不含xy的项。

〔例3〕求代数式(2a+7b)3-8(a+5b)3+12(2a+7b)3-7(a+5b)3+7(2a+7b)3的值.其中a=9,b=-3.

解:(2a+7b)3-8(a+5b)3+12(2a+7b)3-7(a+5b)3+7(2a+7b)3

=(1+12+7)(2a+7b)3+(-8-7)(a+5b)3

=20(2a+7b)3-15(a+5b)3

当a=9,b=-3时

原式=20〔2×9+7×(-3)〕3-15〔9+5×(-3)〕3

=20×(-3)3-15×(-6)3

=20×(-27)-15×(-216)

=-540+3240

=2700

化简:(4x-2y)-{ 5x-[8y-2x-(x+y)]-x}

解:原式=4x-2y-[5x-(8y-2x-x-y)-x]

=4x-2y-[5x-(7y-3x)-x]

=4x-2y-(5x-7y+3x-x)

=4x-2y-(7x-7y)

=4x-2y-7x+7y

=-3x+5y

说明: 本题指出了多项式化简的运算顺序,多重括号的去括号,一般按去小括号→去中括号→去大括号的程序,逐次去掉括号,每去一层括号都要合并同类项一次,以使运算简便.也可以由外向里脱即按去大括号→去中括号→去小括号的程序逐渐去掉括号.

选题角度:关于先去括号,再合并同类项的题目

例1 如果 xky与- x2y是同类项,则k=______, xky+(- x2y)=________.

【解析】 xky与- x2y是同类项,这两项中x的指数必须相等,所以k=2;合并同类项,只需将它们的系数相加,因为 与- 互为相反数,它们的和为零,所以 xky+(- x2y)=0.答案是:2 0.

例2 合并下列多项式中的同类项.

(1)4x2y-8xy2+7-4x2y+10xy2-4;

(2)a2-2ab+b2+a2+2ab+b2.

【解析】 (1)初学时用不同记号标出各同类项,会减少运算的错误;(2)常数项都是同类项;(3)两个同类项的系数互为相反数,则合并后结果为0.答案是:

(1)原式=(4x2y-4x2y)+(-8xy2+10xy2)+(7-4)

=(4-4)x2y+(-8+10)xy2+3

=2xy2+3;

(2)原式=(a2+a2)+(-2ab+2ab)+(b2+b2)

=2a2+2b2.

在线检测

1.将如图两个框中的同类项用线段连起来:

2.当m=________时,-x3b2m与 x3b是同类项.

3.如果5akb与-4a2b是同类项,

那么5akb+(-4a2b)=_______.

4.直接写出下列各式的结果:

(1)- xy+ xy=_______; (2)7a2b+2a2b=________;

(3)-x-3x+2x=_______; (4)x2y- x2y- x2y=_______;

(5)3xy2-7xy2=________.

5.选择题:

(1)下列各组中两数相互为同类项的是( )

A. x2y与-xy2; B.0.5a2b与0.5a2c; C.3b与3abc; D.-0.1m2n与 mn2

(2)下列说法正确的是( )

A.字母相同的项是同类项 B.只有系数不同的项,才是同类项

C.-1与0.1是同类项 D.-x2y与xy2是同类项

6.合并下列各式中的同类项:

(1)-4x2y-8xy2+2x2y-3xy2; (2)3x2-1-2x-5+3x-x2;

(3)-0.8a2b-6ab-1.2a2b+5ab+a2b; (4)5yx-3x2y-7xy2+6xy-12xy+7xy2+8x2y.

7.求下列多项式的值:

(1) a2-8a- +6a- a2+ ,其中a= ;

(2)3x2y2+2xy-7x2y2- xy+2+4x2y2,其中x=2,y= .

3.4 合并同类项(答案)

1.略 2.略 3.ab

4.(1)0 (2)9a2b (3)-2x (4) x2y (5)-4xy2

5.(1)D (2)C

6.(1)-2x2y-11xy2 (2)2x2+x-6 (3)-a2b-ab (4)-xy+5x2y

50道合并同类项的计算题

(1)(3x-5y)-(6x+7y)+(9x-2y)

(2)2a-[3b-5a-(3a-5b)]

(3)(6m2n-5mn2)-6(m2n-mn2)

解:(1)(3x-5y)-(6x+7y)+(9x-2y)

=3x-5y-6x-7y+9x-2y (正确去掉括号)

=(3-6+9)x+(-5-7-2)y (合并同类项)

=6x-14y

(2)2a-[3b-5a-(3a-5b)] (应按小括号,中括号,大括号的顺序逐层去括号)

=2a-[3b-5a-3a+5b] (先去小括号)

=2a-[-8a+8b] (及时合并同类项)

=2a+8a-8b (去中括号)

=10a-8b

(3)(6m2n-5mn2)-6(m2n-mn2) (注意第二个括号前有因数6)

=6m2n-5mn2-2m2n+3mn2 (去括号与分配律同时进行)

=(6-2)m2n+(-5+3)mn2 (合并同类项)

=4m2n-2mn2

例2.已知:A=3x2-4xy+2y2,B=x2+2xy-5y2

求:(1)A+B (2)A-B (3)若2A-B+C=0,求C。

解:(1)A+B=(3x2-4xy+2y2)+(x2+2xy-5y2)

=3x2-4xy+2y2+x2+2xy-5y2(去括号)

=(3+1)x2+(-4+2)xy+(2-5)y2(合并同类项)

=4x2-2xy-3y2(按x的降幂排列)

(2)A-B=(3x2-4xy+2y2)-(x2+2xy-5y2)

=3x2-4xy+2y2-x2-2xy+5y2 (去括号)

=(3-1)x2+(-4-2)xy+(2+5)y2 (合并同类项)

=2x2-6xy+7y2 (按x的降幂排列)

(3)∵2A-B+C=0

∴C=-2A+B

=-2(3x2-4xy+2y2)+(x2+2xy-5y2)

=-6x2+8xy-4y2+x2+2xy-5y2 (去括号,注意使用分配律)

=(-6+1)x2+(8+2)xy+(-4-5)y2 (合并同类项)

=-5x2+10xy-9y2 (按x的降幂排列)

例3.计算:

(1)m2+(-mn)-n2+(-m2)-(-0.5n2)

(2)2(4an+2-an)-3an+(an+1-2an+1)-(8an+2+3an)

(3)化简:(x-y)2-(x-y)2-[(x-y)2-(x-y)2]

解:(1)m2+(-mn)-n2+(-m2)-(-0.5n2)

=m2-mn-n2-m2+n2 (去括号)

=(-)m2-mn+(-+)n2 (合并同类项)

=-m2-mn-n2 (按m的降幂排列)

(2)2(4an+2-an)-3an+(an+1-2an+1)-(8an+2+3an)

=8an+2-2an-3an-an+1-8an+2-3an (去括号)

=0+(-2-3-3)an-an+1 (合并同类项)

=-an+1-8an

(3)(x-y)2-(x-y)2-[(x-y)2-(x-y)2] [把(x-y)2看作一个整体]

=(x-y)2-(x-y)2-(x-y)2+(x-y)2 (去掉中括号)

=(1--+)(x-y)2 (“合并同类项”)

=(x-y)2

例4求3x2-2{ x-5[x-3(x-2x2)-3(x2-2x)]-(x-1)}的值,其中x=2。

分析:由于已知所给的式子比较复杂,一般情况都应先化简整式,然后再代入所给数值x=-2,去括号时要注意符号,并且及时合并同类项,使运算简便。

解:原式=3x2-2{ x-5[x-3x+6x2-3x2+6x]-x+1} (去小括号)

=3x2-2{ x-5[3x2+4x]-x+1} (及时合并同类项)

=3x2-2{ x-15x2-20x-x+1} (去中括号)

=3x2-2{ -15x2-20x+1} (化简大括号里的式子)

=3x2+30x2+40x-2 (去掉大括号)

=33x2+40x-2

当x=-2时,原式=33×(-2)2+40×(-2)-2=132-80-2=50

例5.若16x3m-1y5和-x5y2n+1是同类项,求3m+2n的值。

解:∵16x3m-1y5和-x5y2n+1是同类项

∴对应x,y的次数应分别相等

∴3m-1=5且2n+1=5

∴m=2且n=2

∴3m+2n=6+4=10

本题考察我们对同类项的概念的理解。

例6.已知x+y=6,xy=-4,求: (5x-4y-3xy)-(8x-y+2xy)的值。

解:(5x-4y-3xy)-(8x-y+2xy)

=5x-4y-3xy-8x+y-2xy

=-3x-3y-5xy

=-3(x+y)-5xy

∵x+y=6,xy=-4

∴原式=-3×6-5×(-4)=-18+20=2

说明:本题化简后,发现结果可以写成-3(x+y)-5xy的形式,因而可以把x+y,xy的值代入原式即可求得最后结果,而没有必要求出x,y的值,这种思考问题的思想方法叫做整体代换,希望同学们在学习过程中,注意使用。

三、练习

(一)计算:

(1)a-(a-3b+4c)+3(-c+2b)

(2)(3x2-2xy+7)-(-4x2+5xy+6)

(3)2x2-{ -3x+6+[4x2-(2x2-3x+2)]}

(二)化简

(1)a0,b0,|6-5b|-|3a-2b|-|6b-1|

(2)1a3,|1-a|+|3-a|+|a-5|

(三)当a=1,b=-3,c=1时,求代数式a2b-[a2b-(5abc-a2c)]-5abc的值。

(四)当代数式-(3x+6)2+2取得最大值时,求代数式5x-[-x2-(x+2)]的值。

(五)x2-3xy=-5,xy+y2=3,求x2-2xy+y2的值。

练习参考答案:

(一)计算:

(1)-a+9b-7c (2)7x2-7xy+1 (3)-4

(二)化简

(1)∵a0, b0

∴|6-5b|-|3a-2b|-|6b-1|

=6-5b-(3a-2b)-(1-6b)

=6-5b-3a+2b-1+6b=-3a+3b+5

(2)∵1a3

∴|1-a|+|3-a|+|a-5|=a-1+3-a+5-a=-a+7

(三)原式=-a2b-a2c= 2

(四)根据题意,x=-2,当x=-2时,原式=-

(五)-2(用整体代换)

合并同类项的练习题

例1、合并同类项

(1)(3x-5y)-(6x+7y)+(9x-2y)

(2)2a-[3b-5a-(3a-5b)]

(3)(6m2n-5mn2)-6(m2n-mn2)

解:(1)(3x-5y)-(6x+7y)+(9x-2y)

=3x-5y-6x-7y+9x-2y (正确去掉括号)

=(3-6+9)x+(-5-7-2)y (合并同类项)

=6x-14y

(2)2a-[3b-5a-(3a-5b)] (应按小括号,中括号,大括号的顺序逐层去括号)

=2a-[3b-5a-3a+5b] (先去小括号)

=2a-[-8a+8b] (及时合并同类项)

=2a+8a-8b (去中括号)

=10a-8b

(3)(6m2n-5mn2)-6(m2n-mn2) (注意第二个括号前有因数6)

=6m2n-5mn2-2m2n+3mn2 (去括号与分配律同时进行)

=(6-2)m2n+(-5+3)mn2 (合并同类项)

=4m2n-2mn2

例2.已知:A=3x2-4xy+2y2,B=x2+2xy-5y2

求:(1)A+B (2)A-B (3)若2A-B+C=0,求C。

解:(1)A+B=(3x2-4xy+2y2)+(x2+2xy-5y2)

=3x2-4xy+2y2+x2+2xy-5y2(去括号)

=(3+1)x2+(-4+2)xy+(2-5)y2(合并同类项)

=4x2-2xy-3y2(按x的降幂排列)

(2)A-B=(3x2-4xy+2y2)-(x2+2xy-5y2)

=3x2-4xy+2y2-x2-2xy+5y2 (去括号)

=(3-1)x2+(-4-2)xy+(2+5)y2 (合并同类项)

=2x2-6xy+7y2 (按x的降幂排列)

(3)∵2A-B+C=0

∴C=-2A+B

=-2(3x2-4xy+2y2)+(x2+2xy-5y2)

=-6x2+8xy-4y2+x2+2xy-5y2 (去括号,注意使用分配律)

=(-6+1)x2+(8+2)xy+(-4-5)y2 (合并同类项)

=-5x2+10xy-9y2 (按x的降幂排列)

例3.计算:

(1)m2+(-mn)-n2+(-m2)-(-0.5n2)

(2)2(4an+2-an)-3an+(an+1-2an+1)-(8an+2+3an)

(3)化简:(x-y)2-(x-y)2-[(x-y)2-(x-y)2]

解:(1)m2+(-mn)-n2+(-m2)-(-0.5n2)

=m2-mn-n2-m2+n2 (去括号)

=(-)m2-mn+(-+)n2 (合并同类项)

=-m2-mn-n2 (按m的降幂排列)

(2)2(4an+2-an)-3an+(an+1-2an+1)-(8an+2+3an)

=8an+2-2an-3an-an+1-8an+2-3an (去括号)

=0+(-2-3-3)an-an+1 (合并同类项)

=-an+1-8an

(3)(x-y)2-(x-y)2-[(x-y)2-(x-y)2] [把(x-y)2看作一个整体]

=(x-y)2-(x-y)2-(x-y)2+(x-y)2 (去掉中括号)

=(1--+)(x-y)2 (“合并同类项”)

=(x-y)2

例4求3x2-2{ x-5[x-3(x-2x2)-3(x2-2x)]-(x-1)}的值,其中x=2。

分析:由于已知所给的式子比较复杂,一般情况都应先化简整式,然后再代入所给数值x=-2,去括号时要注意符号,并且及时合并同类项,使运算简便。

解:原式=3x2-2{ x-5[x-3x+6x2-3x2+6x]-x+1} (去小括号)

=3x2-2{ x-5[3x2+4x]-x+1} (及时合并同类项)

=3x2-2{ x-15x2-20x-x+1} (去中括号)

=3x2-2{ -15x2-20x+1} (化简大括号里的式子)

=3x2+30x2+40x-2 (去掉大括号)

=33x2+40x-2

当x=-2时,原式=33×(-2)2+40×(-2)-2=132-80-2=50

例5.若16x3m-1y5和-x5y2n+1是同类项,求3m+2n的值。

解:∵16x3m-1y5和-x5y2n+1是同类项

∴对应x,y的次数应分别相等

∴3m-1=5且2n+1=5

∴m=2且n=2

∴3m+2n=6+4=10

本题考察我们对同类项的概念的理解。

例6.已知x+y=6,xy=-4,求: (5x-4y-3xy)-(8x-y+2xy)的值。

解:(5x-4y-3xy)-(8x-y+2xy)

=5x-4y-3xy-8x+y-2xy

=-3x-3y-5xy

=-3(x+y)-5xy

∵x+y=6,xy=-4

∴原式=-3×6-5×(-4)=-18+20=2

说明:本题化简后,发现结果可以写成-3(x+y)-5xy的形式,因而可以把x+y,xy的值代入原式即可求得最后结果,而没有必要求出x,y的值,这种思考问题的思想方法叫做整体代换,希望同学们在学习过程中,注意使用。

三、练习

(一)计算:

(1)a-(a-3b+4c)+3(-c+2b)

(2)(3x2-2xy+7)-(-4x2+5xy+6)

(3)2x2-{ -3x+6+[4x2-(2x2-3x+2)]}

(二)化简

(1)a0,b0,|6-5b|-|3a-2b|-|6b-1|

(2)1a3,|1-a|+|3-a|+|a-5|

(三)当a=1,b=-3,c=1时,求代数式a2b-[a2b-(5abc-a2c)]-5abc的值。

(四)当代数式-(3x+6)2+2取得最大值时,求代数式5x-[-x2-(x+2)]的值。

(五)x2-3xy=-5,xy+y2=3,求x2-2xy+y2的值。

练习参考答案:

(一)计算:

(1)-a+9b-7c (2)7x2-7xy+1 (3)-4

(二)化简

(1)∵a0, b0

∴|6-5b|-|3a-2b|-|6b-1|

=6-5b-(3a-2b)-(1-6b)

=6-5b-3a+2b-1+6b=-3a+3b+5

(2)∵1a3

∴|1-a|+|3-a|+|a-5|=a-1+3-a+5-a=-a+7

(三)原式=-a2b-a2c= 2

(四)根据题意,x=-2,当x=-2时,原式=-

(五)-2(用整体代换)

合并同类项练习题的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于合并同类项题目及答案简单、合并同类项练习题的信息别忘了在本站进行查找喔。

copyright © 2026 powered by 若释快讯网   sitemap